TypeScript for Computer Vision
Introduction
Computer vision is the field of enabling machines to interpret and understand the visual world. TypeScript can enhance the development process by providing type safety and code organization. In this guide, we'll introduce TypeScript for computer vision and provide a basic example using TypeScript and the TensorFlow.js library to perform image classification.
Prerequisites
Before you begin, make sure you have the following prerequisites:
- Node.js: You can download it from https://nodejs.org/
- TypeScript: Install it globally with
npm install -g typescript
- Visual Studio Code (or your preferred code editor)
Getting Started with TypeScript for Computer Vision
Let's create a basic example of image classification using TypeScript and TensorFlow.js.
Step 1: Set Up Your Project
Create a new directory for your project and navigate to it in your terminal:
mkdir computer-vision-app
cd computer-vision-app
Step 2: Initialize a Node.js Project
Initialize a Node.js project and answer the prompts. You can use the default settings for most prompts:
npm init
Step 3: Install Dependencies
Install the required dependencies, including TypeScript and TensorFlow.js:
npm install typescript @tensorflow/tfjs-node --save
Step 4: Create TypeScript Configuration
Create a TypeScript configuration file (tsconfig.json) in your project directory:
{
"compilerOptions": {
"target": "ES6",
"outDir": "./dist",
"rootDir": "./src"
}
}
Step 5: Create TypeScript Code
Create a TypeScript file (e.g., app.ts) to perform image classification:
// app.ts
import * as tf from '@tensorflow/tfjs-node';
import * as fs from 'fs';
const loadAndClassifyImage = async (modelPath: string, imagePath: string) => {
const model = await tf.loadLayersModel(`file://${modelPath}`);
const imageBuffer = fs.readFileSync(imagePath);
const image = tf.node.decodeImage(imageBuffer);
const predictions = model.predict(image);
const values = predictions.dataSync();
const topClass = values.indexOf(Math.max(...values));
return topClass;
};
loadAndClassifyImage('path/to/model.json', 'path/to/image.jpg')
.then((topClass) => {
console.log('Predicted class:', topClass);
});
Step 6: Create an HTML File
Create an HTML file (index.html) for displaying the image and prediction:
<!-- index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Image Classification</title>
</head>
<body>
<h2>Image Classification</h2>
<div id="app">
<img src="path/to/image.jpg" alt="Image for classification">
</div>
<script src="dist/app.js"></script>
</body>
</html>
Step 7: Include TypeScript in Your HTML
Include the compiled TypeScript code in your HTML file by referencing the generated JavaScript file:
<script src="dist/app.js"></script>
Conclusion
This basic example demonstrates how to use TypeScript with TensorFlow.js to perform image classification. In real computer vision projects, you can work with more complex models, perform object detection, facial recognition, and create custom vision applications. TypeScript ensures that your code is maintainable and well-structured as your computer vision projects become more advanced.